The dopamine D2 receptor dimer and its interaction with homobivalent antagonists: homology modeling, docking and molecular dynamics

نویسندگان

  • Agnieszka A. Kaczor
  • Manuela Jörg
  • Ben Capuano
چکیده

In order to apply structure-based drug design techniques to G protein-coupled receptor complexes, it is essential to model their 3D structure and to identify regions that are suitable for selective drug binding. For this purpose, we have developed and tested a multi-component protocol to model the inactive conformation of the dopamine D2 receptor dimer, suitable for interaction with homobivalent antagonists. Our approach was based on protein-protein docking, applying the Rosetta software to obtain populations of dimers as present in membranes with all the main possible interfaces. Consensus scoring based on the values and frequencies of best interfaces regarding four scoring parameters, Rosetta interface score, interface area, free energy of binding and energy of hydrogen bond interactions indicated that the best scored dimer model possesses a TM4-TM5-TM7-TM1 interface, which is in agreement with experimental data. This model was used to study interactions of the previously published dopamine D2 receptor homobivalent antagonists based on clozapine,1,4-disubstituted aromatic piperidines/piperazines and arylamidoalkyl substituted phenylpiperazine pharmacophores. It was found that the homobivalent antagonists stabilize the receptor-inactive conformation by maintaining the ionic lock interaction, and change the dimer interface by disrupting a set of hydrogen bonds and maintaining water- and ligand-mediated hydrogen bonds in the extracellular and intracellular part of the interface. Graphical Abstract Structure of the final model of the dopamine D2 receptor homodimer, indicating the distancebetween Tyr37 and Tyr 5.42 in the apo form (left) and in the complex with the ligand (right).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physicochemical properties analysis and dopamine D2 receptor (D2R) docking of zotepine as an atypical antipsychotic antagonist

The main purpose of the present investigation is the study of therapeutically effect of Zotepine in schizophrenia disease treatment. In first step, the molecular structure of the said compound is optimized using density functional theory (DFT) technique by B3LYP functional method at 6-311++G(d,p) level of theory. Then the electronic properties of the title molecule are calculated using frontier...

متن کامل

Lateral hypothalamus chemical stimulation-induced antinociception was attenuated by injection of dopamine D1 and D2 receptor antagonists in the ventral tegmental area

Introduction: Stimulation or inactivation of the lateral hypothalamus (LH) produces antinociception. Studies showed a role for the ventral tegmental area (VTA) in the antinociception induced by LH chemical stimulation through the orexinergic receptors. In this study, we assessed the role of intra-VTA dopamine D1 and D2 receptors in antinociceptive effects of cholinergic agonist, carbachol, m...

متن کامل

Molecular Docking studies of D2 Dopamine receptor with Risperidone derivatives

In this work, 3D model of D2 dopamine receptor was determined by comparative homology modeling program MODELLER. The computed model's energy was minimized and validated using PROCHECK and Errat tool to obtain a stable model structure and was submitted in Protein Model Database (PMDB-ID: PM0079251). Stable model was used for molecular docking against Risperidone and their 15 derivatives using Au...

متن کامل

Discovery of Novel Glucagon Receptor Antagonists Using Combined Pharmacophore Modeling and Docking

Glucagon and the glucagon receptor are most important molecules control over blood glucose concentrations. These two molecules are very important to studies of type 2 diabetic patients. In literature, several classes of small molecule antagonists of the human glucagon receptor have been reported. Glucagon receptor antagonist could decrease hepatic glucose output and improve glucose control in d...

متن کامل

Discovery of Novel Glucagon Receptor Antagonists Using Combined Pharmacophore Modeling and Docking

Glucagon and the glucagon receptor are most important molecules control over blood glucose concentrations. These two molecules are very important to studies of type 2 diabetic patients. In literature, several classes of small molecule antagonists of the human glucagon receptor have been reported. Glucagon receptor antagonist could decrease hepatic glucose output and improve glucose control in d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2016